Leetcode 209.长度最小的子数组
Leetcode 209.长度最小的子数组
题目要求
- 给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其总和大于等于 target 的长度最小的 子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
提交
1 | class Solution { |

官方答案
方法一:暴力法
思路及算法:
暴力法是最直观的方法。初始化子数组的最小长度为无穷大,枚举数组 nums 中的每个下标作为子数组的开始下标,对于每个开始下标 i,需要找到大于或等于 i 的最小下标 j,使得从 nums[i] 到 nums[j] 的元素和大于或等于 s,并更新子数组的最小长度(此时子数组的长度是 j−i+1)。
复杂度分析:
- 时间复杂度:时间复杂度:O(n^2),其中 n 是数组的长度。需要遍历每个下标作为子数组的开始下标,对于每个开始下标,需要遍历其后面的下标得到长度最小的子数组。
- 空间复杂度:O(1)。
1 | class Solution { |
方法二:前缀和 + 二分查找
思路与算法:
方法一的时间复杂度是 O(n^2),因为在确定每个子数组的开始下标后,找到长度最小的子数组需要 O(n) 的时间。如果使用二分查找,则可以将时间优化到 O(logn)。
为了使用二分查找,需要额外创建一个数组 sums 用于存储数组 nums 的前缀和,其中 sums[i] 表示从 nums[0] 到 nums[i−1] 的元素和。得到前缀和之后,对于每个开始下标 i,可通过二分查找得到大于或等于 i 的最小下标 bound,使得 sums[bound]−sums[i−1]≥s,并更新子数组的最小长度(此时子数组的长度是 bound−(i−1))。
因为这道题保证了数组中每个元素都为正,所以前缀和一定是递增的,这一点保证了二分的正确性。如果题目没有说明数组中每个元素都为正,这里就不能使用二分来查找这个位置了。
复杂度分析:
- 时间复杂度:O(nlogn),其中 n 是数组的长度。需要遍历每个下标作为子数组的开始下标,遍历的时间复杂度是 O(n),对于每个开始下标,需要通过二分查找得到长度最小的子数组,二分查找得时间复杂度是 O(logn),因此总时间复杂度是 O(nlogn)。
- 空间复杂度:O(n),其中 n 是数组的长度。额外创建数组 sums 存储前缀和。
1 | class Solution { |
方法三:滑动窗口
思路与算法:
在方法一和方法二中,都是每次确定子数组的开始下标,然后得到长度最小的子数组,因此时间复杂度较高。为了降低时间复杂度,可以使用滑动窗口的方法。
定义两个指针 start 和 end 分别表示子数组(滑动窗口窗口)的开始位置和结束位置,维护变量 sum 存储子数组中的元素和(即从 nums[start] 到 nums[end] 的元素和)。
初始状态下,start 和 end 都指向下标 0,sum 的值为 0。
每一轮迭代,将 nums[end] 加到 sum,如果 sum≥s,则更新子数组的最小长度(此时子数组的长度是 end−start+1),然后将 nums[start] 从 sum 中减去并将 start 右移,直到 sum<s,在此过程中同样更新子数组的最小长度。在每一轮迭代的最后,将 end 右移。
复杂度分析:
- 时间复杂度:O(n),其中 n 是数组的长度。指针 start 和 end 最多各移动 n 次。
- 空间复杂度:O(1)。
1 | class Solution { |
